

Enabling high-volume production of photonics chips

with machine learning

Ksenia Yadav Enablence Technologies

Photonics West 2024

January 30, 2024

Introduction Advances in machine learning

Introduction Advances in machine learning

Introduction AI and ML in photonics

493

- The photonics industry has began adopting AI and ML techniques to further both research and deployment of optical technologies.
- Advances have been made in:
 - Nanophotonics inverse design
 - Deep learning microscopy
 - Machine learning in optical communication and networking
 - Deep learning in ultrafast optics

Yair Rivenson,¹ Zoltán Göröcs,^{12,3,†} Harun Günaydin,^{1,†} Yibo Zhang,^{12,3} 💿 Hongda Wang,^{12,3} 💿 and Aydogan Ozcan^{12,3,}* 💿

nature photonics

Review Article | Published: 26 October 2018

Inverse design in nanophotonics

Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković & Alejandro W. Rodriguez 🖂

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 2, JANUARY 15, 2019

An Optical Communication's Perspective on Machine Learning and Its Applications

Faisal Nadeem Khan⁶, Qirui Fan⁶, Chao Lu, and Alan Pak Tao Lau

Integrated Photonics

- The widespread adoption of optical communication systems is a key driving force of recent surge in information exchange.
- Optical solutions dominate long-distance communication, and have the potential to transform short-reach links through advanced optical interconnect solutions.

Integrated Photonics

- Today, we present our progress in leveraging the power of machine learning to overcome the biggest hurdles for the widespread adoption of photonic integrated circuits:
 - use of multi-path neural networks as a key tool for transitioning from low-volume prototype designs to high-performing chips in volume production.
 - use of machine learning to predict the performance of optical devices.

Integrated Photonics Prototype design vs. large-scale adoption

• The transition from prototype design to achieving uniform manufacturing in high volumes is a pivotal phase in any product development process.

Systems-on-chip in monolithically integrated silica-on-silicon platform

Integrated Optics: Devices, Materials, and Technologies XXVIII

30 January 2024, 11:35 AM, room 304

Integrated Photonics Challenges for large-scale adoption

Good performance chip

Variation in performance of identically designed chips

Enablence

IRANSMISSION (dB) -25 -35 / 1260 1280 1300 WAVELENGTH (nm)

-10

-15

-20

1340

1340

Homogeneity of performance after ML optimization

Poor performance chip

ML-enhanced

mas

1340

Enablence **Prediction of Device Performance Classification based on a wafer probe measurement** Specification parameters: Insertion loss 1. 2. IL uniformity 3. Grid detuning 4. Channel spacing uniformity 5. 0.5 dB passband 1 dB passband 6. 3 dB passband 7. 8. PDL 9. Ripple Traditional testing PASS/FAIL map 10. Adjacent crosstalk Non-adjacent crosstalk 11. 12. Total crosstalk 1325

Typical spectroscopic signature

Predicted performance of hundreds of chips on a wafer

Probed locations on the wafer

Prediction of Device Performance

Probed locations on the wafer

Conclusions

- AI/ML has become instrumental in our work in extending the reach of the photonics technology.
- We described how AI and ML have revolutionized the way photonic integrated circuits are designed and fabricated in a high-volume environment:
 - Multi-path neural network optimizes the individual design parameters of hundreds of devices on a mask.
 - A support vector machine (SVM) predicts the performance of optical chips in multi-dimensional space.
- The promising synergy between photonics and AI plays a key role in accelerating research progress in photonics and fostering the widespread adoption of photonic solutions across a diverse range of applications.
- Our current work focuses on the use machine learning to scale the capabilities of our platform to integrated optics solutions in LiDAR and optical computing applications.

USA

Enablence USA Components, Inc. 2933 Bayview Drive Fremont, CA 94538

Tel: +1 (510) 226-8900 Fax: +1 (510) 226-8333

Canada

Enablence Technologies, Inc.

390 March Road, Suite 119 Ottawa, Ontario K2K 0G7

Tel: +1 (613) 656-2850 Fax: +1 (613) 656- 2855

Fab Services

For clients who wish to implement their own PLC designs, we offer services through our own silica-on-silicon PLC fabrication facility. The client can provide their own photomask, or digital mask data (GDS format). We are known for a quick turnaround from our well-equipped fab.

Inquire