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Introduction
Advances in machine learning

ML is able to capture
essential features
from vast amounts of
high-dimensional data
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Introduction Q Enablence
Al and ML in photonics

. The photonics industry has began adopting Al and ML techniques to further both research and deployment of
optical technologies.

. Advances have been made in:
- Nanophotonics inverse design
- Deep learning microscopy
- Machine learning in optical communication and networking

- Deep learning in ultrafast optics
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Integrated Photonics Q Enablence

The widespread adoption of optical communication systems is a key driving force of recent surge in information
exchange.

Optical solutions dominate long-distance communication, and have the potential to transform short-reach links
through advanced optical interconnect solutions.




Integrated Photonics Q Enablence

Today, we present our progress in leveraging the power of machine learning to overcome the biggest hurdles for the
widespread adoption of photonic integrated circuits:

use of multi-path neural networks as a key tool for transitioning from low-volume prototype designs to high-
performing chips in volume production.

use of machine learning to predict the performance of optical devices.




Integrated Photonics Q Enablence

Prototype design vs. large-scale adoption

. The transition from prototype design to achieving uniform manufacturing in high volumes is a pivotal phase in any
product development process.
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Q Enablence

Poor performance chip

Integrated Photonics

Challenges for large-scale adoption

Good performance chip
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Multi-Path Deep Learning Q Enablence

Photonics chip design optimizations

?/—.— Normalized_ch0-ch3 | input: | [(None, 4, 90)]
=
p/( InputLayer output: | [(None, 4, 90)]
d D FOT feature_extraction | input: | (None, 4, 90) | | F10T feature extraction | input: | (None, 4, 90) | | F11T feature extraction | input: | (None, 4, 90)
FOT output: | (None, 90) F10T output: | (None, 90) FUT output: | (None, 90)
— l /
— = FOT densel | input: | (None, 90) F10T densel | input: | (None, 90) F11T densel | input: | (None, 90)
Dense | output: | (None, 200) Dense output: | (None, 200) Dense output: | (None, 200)
FOT dense2 | input: | (None, 200) F10T dense2 | input: | (None, 200) F11T dense2 | input: | (None, 200)
g- Dense | output: | (None, 200) Dense output: | (None, 200) Dense output: | (None, 200)
<0
] :
EIN FOT dense3 | input: | (None, 200) 1c71c9_dI5-dl6 | input: | (None, 200)
¢ Dense | output: | (None, 200) Dense output: | (None, 5)
design l
A 4-channel multiplexer: spectrum - -

1c0-c3_dl0-d12 | input: | (None, 200) lc4-1c6_dI3-di4 | input: | (None, 200)
Dense output: | (None, 7) Dense output: | (None, 5)

l

1c0-0_d10-dl6 | input: | [(None, 7), (None, 5), (None, 5)]
Concatenate | output: (None, 17)

] l

re-order outputs | input: | (None, 17)
Reorder output: | (None, 17)

* Two filter stages

design
parameters

e 7 asymmetric MZIs

Rescale_to_physical units | input: | (None, 17)
Rescale output: | (None, 17)




Multi-Path Deep Learning Q Enablence

Photonics chip design optimizations

TRAINING SET

gt | [ meur gL [_weur aget| [__meur eet | [_weur agec] [ weur TABEL

inpuT X LABEL d®
[

o ¥+
WO PV * +0OB

A 2

B e T TRAINING

- 2 - $ -
i i i
o] [ weur o] [ weur [Ty
I %1

- 2

i
T

1)
W Wm > MODEL
(1]

simulated :
design 8

spectrum i
parameters | = =

wie oneonl
eroeveson|
#ie oueonls
eroeveon)

Delays and coupling coefficients of the 7 VALIDATION SET '

MZls in the lattice filter | | == = ) o MODEL
odd A 2A ! 3t i H i VALIDATION

WeUT___JuABEL

NP
s

.

i

wae onvons
exceve ool

A,
even A 28 5
| S




Multi-Path Deep Learning

Photonics chip design optimizations

ML-enhanced
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Poor performance chip

Good performance chip
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Prediction of Device Performance Q Enablence

Classification based on a wafer probe measurement

= Specification parameters:

1. Insertion loss

2. ILuniformity

3. Grid detuning
4.  Channel spacing
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Prediction of Device Performance
Classification based on a wafer probe measurement

e

sensitivity 95%

specificity 68%

accuracy 90%
precision 92%
F1 score 94%

ROC AUC 85%

S SVM predicted PASS/FAIL map
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Conclusions Q Enablence

. Al/ML has become instrumental in our work in extending the reach of the photonics technology.

. We described how Al and ML have revolutionized the way photonic integrated circuits are designed and
fabricated in a high-volume environment:

*  Multi-path neural network optimizes the individual design parameters of hundreds of devices on a mask.

* Asupport vector machine (SVM) predicts the performance of optical chips in multi-dimensional space.

. The promising synergy between photonics and Al plays a key role in accelerating research progress in
photonics and fostering the widespread adoption of photonic solutions across a diverse range of
applications.

. Our current work focuses on the use machine learning to scale the capabilities of our platform to
integrated optics solutions in LiDAR and optical computing applications.




Custom Optical Design

We have built systems-on-a-chip for avionics, medical robotics,
automotive LIDAR, 3D mapping, and optical sensing. We can do
ial-grade or high-volume of chips. Our

mechanical design engineers can also assist with fiber pigtailing and
packaging. Through PLC, we can help our customers to open new
market opportunities.

Inquire

Fab Services

For clients who wish to implement their own PLC designs, we offer
services through our own silica-on-silicon PLC fabrication facility. The
client can provide their own photomask, or digital mask data (GDS
format). We are known for a quick turnaround from our well-equipped
fab.

Inquire
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